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Summary

We consider a semi-parametric regression model where the dependent vari-
able depends upon the explanatory variables through a linear combination
of these variables: the index. The dependent variable is linked to the index
through an unknown function. Sliced Inverse Regression (SIR) (Li-1991,
Duan and Li-1991) is concerned with the estimation of the direction of the
index. SIR is computationally simple and fast. For small samples, one
observes that the number and the position of slices have influence on the
estimated direction. In this paper, we suggest some new methods, and ob-
tain their asymptotic properties. We compare the small sample behaviour
of the existing and new methods on simulated data.
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1 Introduction

In its simplest version, SIR is concerned with the estimation of the direction of
the vector parameter 3 in the single index semiparametric regression model:

= g@'8,9)
Srladad (1)

L -
where: y is a univariate dependent variable, z a p-dimensional random re-
gressor, and ¢ an error term independent of z. g is called the link function,
B the effective dimension reduction (e.d.r.) direction and z’3, the index. g
and @ are unknown.

This model has been extensively studied by Li, see e.g. Li [8] for an early
reference. Estimation of 3 relies on the fact that 3 is related to the principal
eigenvector of a rank one matrix, cov(E(z|T(y))), with respect to the inner
product (by,bs) = b]X;bs) where T is a function of y and &, = cov(zx). If
y 1s a discrete variable, estimation of E(z|y) is not difficult. This paper is
mainly concerned with a continuous y.

L1’s suggestion of using a discretization of y as T() is computationally sim-
ple and it gives good results for samples not too small. This paper examines
several other methods which may be of interest for small sample situations.
For each method, asymptotic properties are recalled or established. Their
small sample properties are compared on simulated data.

In Section 2 we review some basic properties about the semiparametric
regression model, its connection with inverse regression and the structure of
the ensuing estimation methods. Section 3 gives a description of the various
estimation methods: they are based either on one or several slicings or on
the direct estimation of cov(E(z|y)) through nonparametric methods. The
small sample behavior of these methods is analyzed on simulated data. The
results of these simulations are analyzed in Section 4. Technical tools and
the proof of asymptotic properties are deferred to the Appendix.

2 Population Properties of Sliced Inverse Re-
gression

2.1 Semiparametric model

The semiparametric model in the introduction can be generalized in two
ways. The first generalization is to allow more than one indices:

g(‘L‘,Bl."',x,BK,f), }

¢ 1 " )

where K < p.
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Let ¥, denote the covariance matrix of z. The identifiability of the direc-
tions is guaranteed by the constraints: §,X;08x = 1 and G X:6 = 0,k # [,
which will be enforced hereafter.

Another generalization deals with a q-component dependent variable y,
with a specific link function for each component and one set of indices com-
mon for all components. Li et al [9] examine specific estimation methods for
this multivariate setting. These methods use slicing.

It is often simpler to regress y on the standardized version of z: z =
E;%(:c — E(z)). Parameters are then: nx = E:%ﬁk, k=1,---,K. The Bi’s
are called the e.d.r. directions while the 7 are called the standardized e.d.r.
directions.

2.2 Characterization of the e.d.r. direction
The design condition underlying the fundamental theory of Sliced Inverse
Regression is the following:

Design Condition (D.C.) The regressor & ts sampled from a nondegener-
ate probability distribution such that

E(z'bl2'B) = co + c12'B for allbe RP

where ¢g and ¢y are scalars.

The condition may hold only for the true 3. It holds for all § if and only if
z is elliptically distributed. A study of the bias if the D.C. does not hold 1s
given by Duan and Li [3].

A characterization of the e.d.r. direction is given in the following theorem
(see [3] for the single index model or [8] for the multiple indices situation).

Theorem For model (2), under D.C. the inverse curve E(z |T(y)) falls in
the K-dimensional linear subspace of RP spanned by the standardized e.d.r.
directions 01, - - -, Nk, specifically, for model (1) we get:

E(z | T(y)) = cr(y)n where cr(y) = E(z'n | T(y))

For model (1), a straightforward consequence of this theorem is that
Iz i= cou(B(:|T(y)))

is degenerate in any direction orthogonal to 7. It follows that the principal
eigenvector (that is the eigenvector corresponding to the non-nul eigenvalue),
v, of I'r gives a standardized direction. Transforming back to the original

I L.
scale, ¥z ?v i1s an e.d.r. direction.

The next section reviews a number of estimation methods.
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3 Estimation methods

All the methods that we are to examine depend on the eigenvalue decompo-
sition of an estimator of cov(E(z|T(y))). Due to the ANOVA identity:

cov(z) = I, = cov(E(z | T(y))) + E(cov(z | T(y))),

it is equivalent to estimating any of the two quantities on the right hand side.
Hsing and Carroll [5] have studied the asymptotic properties of estimators
of E(cov(z | y)). All other methods considered here deal with estimators of
the other right-hand side term. They split into two families: direct methods
which nonparametrically estimate cov(E(z | y)) or slicing based methods
which use one or several discretizations of y.
The asymptotic distributions are obtained here for the single index model
(K = 1), while the consistency results are valid for the multiple indices
model. We do not explicitly consider the multivariate y situation, but, with
the exception of Hsing and Carroll’s approach, the methods discussed here
may be used in that setting.

3.1 Slicing and pooled slicing

This subsection is devoted to methods based on one or several slicings.

3.1.1 Basic Sliced Inverse Regression

Let T'( ) be some partition of the range of y into H slices: I;,---,Ig. Then
I'r = Zthl phmpm), where pp, = Pr(y € I) and mp = E(z | y € I1).

These quantities are estimated by their empirical version:
pr=23",1(yi € Ix) and my = #Z?:l z; I (y; € In), which converge
respectively to p, and m,.

Then I'p is estimated by:

H
I E:A ST |
PTZ PhMpimy, .
h=1

The eigenvector, 9, corresponding to the largest eigenvalue of I'p is the esti-
mated standardized e.d.r. direction.

Asymptotics. It follows that I'p = 'y + O,(1/+/n). Consequently, the
estimated standardized e.d.r. direction converges to the principal eigenvector
of I'r, which is a standardized e.d.r. direction, at the root n rate.

Although the asymptotic distribution of slicing based estimators may be di-
rectly obtained (Duan and Li [3]), it will be useful, in particular for the
asymptotic study of pooled slicing based estimators in the next section, to
relate the problem to a linear least squares estimator. This will be done in
the Appendix.
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3.1.2 Pooled slicing

When the sample size is small, the number or the position of slices may have
substantial influence on the estimate of 5. One remedy is to combine the
results from a number of slicings.

One can then hope that pooling the covariances of E(z | T'(y)) for a num-
ber of step functions 7'( ) may regularize the estimated eigenvectors. So let us
consider the single index model and let D different ways of partition of y be
given: Ty( ), d=1,---, D, then T'y = cov(E(z | Ta(y))) = Elca(y)?In n'. Let
us choose a sequence of positive weights wq with Vd, wg > 0 ZdD=1 wq = 1,
and let us define a pooled covariance matrix:

D
- E de‘d.
d=1

Since I'? = zle wqE[ca(y)?]n 0, this matrix is degenerate in any direction
orthogonal to 1 and the non -nul eigenvector is a standardized e.d.r. direction.

We shall denote as 9F the eigenvector corresponding to the largest eigen-
value of T = Zd , Wal'4, the estimator derived from this pooling when each
'y is estimated according to the principle of Basic slicing for the slicing Ty( ).
The choice of the slicings and of the weights is discussed below.

Practical choices

For each slicing T}, the slices are built such that the numbers of cases in
slices never differ by more than one. The number D of slicings is controlled
through the minimum number of slices, Hpmin, and the minimum number
of cases in each slice, nmin, which are given by the user. The parameter
Hpin must be chosen strictly larger than the number of e.d.r. directions
in the model. Starting with a slicing based on Hp, slices, the number of
slices is incremented while the number of cases in each slice is greater than
Nmin- The lower bound npy, = 2 gives a slicing equivalent to the Hsing and
Carroll nonoverlapping slices estimator discussed below. We will see in the
Simulations section that this estimator behaves poorly. So we suggest to
choose nmin > 3.

For the weights w4, we can either choose equal weights or weights pro-
portional to the largest eigenvalue of the I'y in the d-th slicing, A4, which is a
measure of the performance of that slicing. This suggests using the random

weights: g = Ag / Zd ’ Xz,
Asymptotics
CONVERGENCE IN PROBABILITY oF I'Y'. For each slicing,d, we have:

Iy =T34+ 0p(n"*?) and Xa=Xi+ 0,(n~112),

so that:

TF = P 4.0,(n 13,
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ASYMPTOTIC DISTRIBUTION OF THE PSIR ESTIMATOR. The asymptotic
distribution, given in the Appendix, is derived in two steps. First, the SIR
estimator is shown to be nearly the same as the linear least square esti-
mator for the linear regression of a transformation of y, depending on the
slicing, against x. Second, stacking the linear least squares problems of each
slicing just as in the repeated measurement context of classical linear regres-
sion, allows us to obtain the asymptotic distribution of 4¥. The first step
is taken from Carroll and Li’s work [2] while the second step closely follows
the asymptotic study of Pooled Marginal Slicing for Multivariate SIR given
in [1].

3.2 Estimation of the expectation of the conditional co-
variances

The second term of the ANOVA identity is:
A = E(cov(= | y))

Each element in A, cov(z; , z; | y), can be viewed as the local covariance
of errors in the regression of components of z on y. It does not need to be
consistently estimated; it matters only that the expectation with respect to
y gives a consistent estimator of A; ;. In order to keep notations simple, we
assume here that the observations have been sorted according to increasing
values of y. The two estimators studied by Hsing and Carroll [5] are:

A 1 . -
A= = (z2i = z2i—1)(22i — 22i-1)' (Non overlapping slices)
t=1
A= L i(z — zi—1)(2i — 2zi-1)’ (Running slices)
n 1 1—1 1 1—1

1=4

where [n/2] is the integer part of n/2.
The running estimator also appears in the literature on heteroscedastic
regression; see Mueller and Stadtmueller [10].

Asymptotics Under appropriate technical hypothesis, Hsing and Carroll
show that: n3(A — A) = 0,(1) and n3 (A — A) = 0,(1).

3.3 Nonparametric estimation of the covariance of con-
ditional expectations

Nonparametric techniques may be used to estimate ' := cov(E(z|y)) if y is
a continuous variable. The construction ot the estimators essentially follows
the form of this covariance.
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Let 27 be a component of z. Since E(z) = 0, each component of T is

L= cov (¥ (y),v'(y) = /Vj(y)V’(y)f(y)dy, L

where 1/ (y) = E(2’|y) and f is the density function of y.
The conditional expectation, v’ (y), and the density function, f, can be
sstimated by kernel estimators:

Vy € IR, l?j(y) = Z;Lnl i.([\(<y?3) stid f Z (y n?!z)
i=1 %) =1

where K (.) is a kernel. The optimal bandwidths, hJ, and h,, may be obtained,
for example, through cross-validation. ‘
Substituting in the formula of I';,; the true functions v7, V! and f for

their kernel estimator 7/, ' and f, we obtain an ”integral” estimator:

fip /B 2 ()9 (0)F (W) dy

Alternatively, replacing the integral by a sum, a ”"sum” estimator, fj,z,
may be used:

= —Zvﬂ ()9 ()1 [ () > ba),

where the trimming parameter b,, is positive and depends on the sample size
n. Our treatment of the estimation of the off-diagonal terms of I' is inspired
by the work of Lavergne [7].

Whatever method is used (sum or integral), p 4+ 1 smoothing parame-
ters have to be computed. For sum estimators we have to choose the trim-
ming parameter, while for integral estimators, p(p + 1)/2 integrals have to
be numerically evaluated. Thus, these nonparametric methods may be time
consuming unless a fast implementation is used (see the simulation section).

Asymptotics Under appropriate technical hypothesis, we show in the ap-
pendix that I' and T' converge respectively in quadratic mean and in proba-
bility to T'.

The asymptotic properties that we have reported cannot discriminate be-
tween methods. Usually, statistical methods behave well with large samples.
So it is worth comparing these methods on small samples. This is the subject
of the next section. The results of a number of simulation experiments are
therein reported.
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4 Simulations

We conducted a simulation study to compare the performance of different
estimators. All works were carried out in S-PLUS. We first introduce an
efficiency measure to be used. Then we describe the simulated models and
comment on the results.

4.1 An efficiency measure

Some notations must be introduced.

Let N = [m,...,nx] and N = [n1,---,nKk] be the p by K matrix of the true
and estimated standardized e.d.r. directions. The standardized e.d.r. space
is E = Span(N), the linear space generated by the n;’s, while E = Span(N)
is the estimated standardized e.d.r. space. Let Pg and Py be the orthogonal
projectors on E and E. From the definition of the n’s and ne's: N'N =
N’'N = I . Therefore:

Pg =N N’ and PE:NN'.
An efficiency measure for the estimates can be defined as:
m(E,E) = Ti(PzPg)/K.

This measure takes values in the interval [0,1]. If E = E, then m(E, E) =
1. If £ and E are orthogonal, then m(E, E) = 0. The closer the measure
1s to one, the better is the estimation. For K = 1, this measure is just the
squared cosine of the angle between 7; and 7.

4.2 Models for simulation

We consider a single index regression model:

y=1/[1 + (2'B1)* exp{(e'B1)® + (z'B1)e}] Model A

and a two indices model:

y=1/[05 + exp(z’f1+¢) + exp(z'fr—¢)] Model B

We have choosen these models in order to have a bounded y. This bounded-
ness property allows us to monitor the lower and upper limits of bandwidth
in the automatic selection step in nonparametric estimation (Haerdle’s pro-
cedures [4] were used).

The dimension p is set at 5, and = and ¢ are independent. x follows an
elliptically contoured distribution: a p-dimensionnal Pearson Type II distri-
bution (described in Johnson [6]) with density

L(p/2+m+1)
['(m + 1)nr/2

m

He) = 1S.72 1= (2 — p) =7 (2 — p)]
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having support (z — p)’E;!(z — p) < —1 and shape parameter m > —1.
Futher, the parameters ;4 and ¥, are interpreted as: E[z] = p and cov[z] =
mz*. Here, z is generated by means of the Cambanis representation:

z = RBU®) 4+ i1, where R? has a beta distribution with parameters p/2 and
m+ 1, B is a p by p matrix such that BB’ = X,, and U is a random
vector that is uniformly distributed on the unit hypersphere. We take p =
(0,0,0,0,0), s = 2m+'p+2)Is and m = —0.9. (So £, = I5 and n; =
Br for k=1,...,K). ¢ is standard normally distributed.

We take f; = = %(1, 1,-1,1,0) and B3 = ns = 715(0, 1,1,0,-1)".

1000 samples of n = 25 data points are generated from model A, and 1000
samples of n = 50 data points for model B.

4.3 Results

Acronyms for the competing methods are given Table 1.

SIR Sliced Inverse Regression

PSIR Pooled Slicing Inverse Regression

HC1 Hsing and Carroll method with nonoverlapping slices
HC2 Hsing and Carroll method with running slices
K-Sum | Kernel and Sum based estimator

K-Int Kernel and Integral based estimator

TABLE 1 - Notations of the different methods.

For samples of n = 25 cases we take 5 slices, and for n = 50, 6 slices
of 7 cases and one randomly chosen slice of 8 cases. For Pooled Slicing, the
minimum number of slices is 3, and the minimum number of cases in each
slice 1s 4.

For the one-component model A, Table 2 gives the mean and standard
deviation of the efficiency measure for the different methods, over the 1000
simulated samples of size n = 25.

SIR | PSIR | HC1 | HC2 | K-Sum | K-Int
Mean 0.693 | 0.761 | 0.491 | 0.680 | 0.817 | 0.819
St. Dev. | 0.233 | 0.169 | 0.303 | 0.238 | 0.116 | 0.114

TABLE 2 - Mean and standard deviation of the efficiency measure for the
different methods in model A.

As we see from this table and Figure 1, the kernel method based esti-
mates are better than the others estimates. PSIR-method gives also good
estimations, while HC1-method appears to be the worst one. The barplots
of Figure 2 confirm these observations: the PSIR, K-Sum and K-Int methods
rarely provide the worst measure among the six methods.



118

‘o—. 1 (e—— Los o | e [ oo | [ o | o
! i i ;
o
i
o H i
i i :
- ,
o ] —_—
i —_—
E e
o i
o1 ——
—
R
— ——
== : ]
o . == — ==
o
SIR PSIR HC1 HC2 K-Sum K-Int

Figure 1: Model A: Boxplots of the measures (by method).
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Figure 2: Model A: Barplot of the best and worst measures (by method).
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Figure 3: Model A: Comparison of SIR, PSIR, HC?, K-Int.

Figures 3 and 4 give scatterplots of simulations of model A for different
methods. The coordinates of a point are the efficiency measure of the methods
corresponding to the rows and columns. First, we observe on Figure 4 that the
K-Sum and K-Int methods often give very similar results, and are uniformly
better than the other methods. PSIR-method also seems to be uniformly
better than SIR-method.

For the multicomponent model B, Table 3 gives the mean and standard
deviation of the efficiency measure for the different methods on the 1000
samples of simulated data.

SIR | PSIR | HC1 | HC2 | K-Sum | K-Int
Mean 0.715 | 0.768 | 0.691 | 0.726 | 0.733 | 0.735
St. Dev. | 0.120 | 0.106 | 0.117 | 0.117 | 0.086 | 0.086

TABLE 3 - Mean and standard deviation of the efficiency measure for the
different methods in model B.

Table 3 and Figures 5, and 6 show that no method accurately finds the
true standardized e.d.r. space from samples of size n = 50 in model B.
However, it is interesting to observe that PSIR-method performs better than
the other methods.
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Figure 4: Model A: Comparison of SIR, HC1, K-Sum, K-Int.
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Figure 6: Model B: Barplot of the best and worst measures (by method).

5 Conclusion

The new estimation methods that we have introduced appear to perform
better than the existing ones. But no one is uniformly better in our simu-
lation study. For a multivariate y, kernel based estimators may suffer the
same drawbacks as multivariate nonparametric regression. Pooled slicing is
simple. It easily extends to multivariate y and seems to have good numerical
properties. The Hsing-Carroll estimator based on running means is simple
too and behaves quite well with small samples. But it cannot be extended
to multivariate y.

6 Appendix

6.1 Defining a Least Squares Estimator Asymptotically
equivalent to the SIR Estimator

6.1.1 Linear regression

The developpement of this subsection is essentially taken from Carroll and
Li [2].
The population version of the linear least squares regression of y over z is:

min __ Ely—a — v'2]%
aER, UERP [ ]

The solution to this problem is, with respect to v:

vps = E(yz), since E(z) = 0 and cov(z) = I,.
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From the study of inverse regression we know that E(z | y) = ¢(y) . Thus
vrs = E(y ¢(y)) n, and vrs is proportional to 7.

Given a sample of (z,y) or (z,y), the moment estimator of vps is s =
1/n 5" yizi. Let us define theoretical residuals: e = y — Ey — v} ¢z. Car-
rying this expression into vy 5 we get:

VLs = VLs + 1/7126,’2,‘ + Op(n"l)

1=l
then, by the Central Limit Theorem:

l/z(vLs — g g) —30 N, (0, cov(ez)).

6.1.2 Asymptotic distribution of the SIR estimator

Some matrix notations must be introduced to closely examine the SIR esti-
mator: .

M = [Thl, — ’I:TLH],

VI = [my, ..., mg],

D = diag(p1, ..., PH),

D = diag(p1, ..., pH),

k = (k1,...,kx)" where ky = Elc(y)|y € Ip].

It is easy to check that M =n k' and M = M + O, (n=1/2).
After elementary manipulations we get:

It =MDM' =T +0,(n"?)

with
I = (k'Dk)~[n+ (K'Dk)"*ADEk][n+ (k' Dk)"*ADEk]’

where A= M — M.
Let v be the non-nul eigenvector of I'z and # the non-nul eigenvector of the
rank one matrix . It is proportional to [ + (k’Dk) LADE] or [(k'Dk) 7

ADk] But this vector may be rewritten as: Zh y Py = L)y mlh

with §; = S0 1 [yi € In]kn.

So, let us write 5,5 = = Y ;_; zi¥i. This is the empirical version of the linear
regression of § over z. The asymptotic distribution of ¥y is then derived,
using the same steps as in the linear regression of y over z. The theoretical
residuals are now: € = y — Ey — v]'sz where v} ¢ is the slope of the linear
regression of § over z and is equal to k' Dk 7.

Ultimately we have to normalize v 5. The §-method gives the asymptotic
distribution of the normalized estimator:

1/2(_ﬁﬂ n) —* N, (0, (k' Dk)~2Pcov(éz) P)
|loLsl|
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with P = I, — ny’.
But, v = vps/||vLs]|| is the normalized estimator. Since o = @ + O, (1/n), v
s asymptotically distributed as o:

n!/%(5 — ) —? N, (0, (k' Dk)~2 Pcov(éz) P).

We are now ready to obtain the asymptotic distribution of the Pooled esti-
mator.

3.1.3 Asymptotic distribution of the Pooled estimator

Denoting by an upper index, d, the d-th slicing, and using notations very
similar to that introduced in the linear regression development, we get:

D Hy
=Y wa »_ (A% + kin)(Af + kin)
d=1 —
vhere A¢ = rhﬁf mﬁ

Let 9¥ be the eigenvector correspondmg to the largest eigenvalue of I'P.
Let us define the scalar: ¢ Zd L wa Y pe(kd)?

and the vector: @ = Zd L Wd Zh , DIRAAL,
I'his yields, after some manipulations:

I =TF 4+ 0,(1/n)
~ith .
TF = &P+ (e)  alln+ (&%) "4’

The principal eigenvector, denoted 4%, of this rank one matrix may be viewed
15 a linear regression estimator, indeed: 974 = [p+(¢F)~1a) = 1/n Y0, z:5F

g D ~ - H

vith g = 37g-; wadf and g =342 ki1 [y € If).

[he asymptotic distribution of #¥¢ is derived in the same way as before.
[heoretical residuals are defined as:

eP =gF —E§° —vFlz

vhere

ULs = dezph kh

d=1

s the slope of the linear regression of #* over z. With the same normalization
1s before we ultimately get the asymptotic distribution:

n'/2(5F — n) —4 N,(0, (1/n) v Pcov(éz)P)

vhere v = 1/(Zd lwdzh T AGINE
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6.2 Consistency of the Nonparametric estimators
6.2.1 Some useful notations

In the following proofs, we will denote: for j =1, ..., p,

o Vi(y) = E[Z|Y =y] = ¢’(y)/f(y), where f(.) is the density function
- ofY;

o ¥y = G/ AW
) = LW L0, A K (u5d)

J
where g7 (y i=1 2 =

and fi(y) = = Th, K (434);
e f, the Nadaraya-Watson estimator of the density function f of Y.

Usually, the functions f,, f},..., f2 are not identical. Indeed, smoothing
parameters may be different. For instance, with the Cross-validation method,
these parameters will be, for a positive bounded function w defined on a
compact support:

e Vj=1,..p, ki = argmin, CVI(h)
. 2
where CV3(h) = 10, [ = v _y(w)] wiw)

P HK(MY)

P BB

e h, = argmin, CV(h)
where CV'(h) = fIR [fn(y)]2 dy — %Z?___l Jn,—i(¥i),
and fn—i(y) = 75 Ljm K (glﬁ——y)

and Vi,-i(y) =

6.2.2 Convergence in probability of T;; = FODMRRZI(IZA(IE STRORINN
to Fj,[ = E{E[zjly]E[ley]}

Assumptions:
Hy: (zi,%)1=1,..,nare independent and identically distributed
0  (trimming parameter)

fly )| — 0 in probability for j =1, ..

Hs:: lMmises s =
Hj3 : 1/bn sup, |fJ (y) —
Hy: 1/bpsup, |93 (v) — ¢ (v )| — 0 in probability for j = 1,.
Hs: 1/bysupy |fn(y) — f(y)] — O in probability

Hs : [|z%‘|]<oofor),l:1,...,p
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Proof:
Let us define:

3|»—*
3

- 1
==> yi)I; —Z v (yi )V (wi) L
=1 1=1

where I,' = [f(yi)>bn]-

The proof splits into three parts.

STEP 1: Let us show that § — 6y = o, (1).

n

_ 1 : .
0—60=—>_ (vi(w)vnlv) — v () (w)) L.
i=1
Using the following decomposition:
v (u)va () — V’)(y(i);/’(yi) )
92 (¥i)=9g’(¥:) \ ( gul¥i)—9 (¥i)

) fn ya ) ( .f (y) )
+ (galyi)=g’ f(y)‘f(y) VA
fn(yl f y'
!
n (gn(yl yx)) (f(y- =13 (i) )VJ
f (yl ,fJ(Uv
n (f(y. — 13 (vi) ) (f 2(U:) = (y:) ),,J (y:)V (i)
fn y| f (y‘ 4 !
—fa(i) ) (f(yi)=13(yi) j ;
+ (M) (1 +1)V ()1 ()
£ (.f (i‘.;:)yf(yt ) (-L(yf), (i (y)+1) I/J( ) l(yz)
and using the fact that under Hj, with a probability converging to 1:
1 1
Vee (0,1), Yy € R, f(y) > b, = — &

faly)  oa(l—¢)

we thus obtain the following upper bound for |0_ - 00|, with a probability
converging to 1:

1/(ba(1=€)) [ (1/(ba(1—€)) sup, |4 (v) — ¢7 ()| sup, |g4(v) — ¢' ()| £ S0, L
+ sup, |9 (v) — ¢ (v)| (;n(;—f)supy |F(v) = L @)] +1) £ 0, A w) |

(

n

+ supy [gh(4) — ' )| otz supy [F) = F )] +1) 2 S0, 1 ()l
1
n

=
]

n

+ sup, |f(y) — fi(y)| (bn(l 5 supy | fn () = f(v)
+ sup, |f(y) = fL(v)| (—n—ESUPy |fi(y) — F)| +1) 5 20y W7 () (ws) s
+ sup, |£(v) = FW)| (5oizgsupy 172 0) = FO)| +1) & S0y 19 () ) 1]

It is easy to show, using H,, Hg and Markov inequality, that:

1/n_21,~ = Op(1) , 1/nZ v (wi) |1 = Op(1),
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n

1nY W ()l =0p(1) . and 1/n) | (y)v (w)| i = Op(1).
i=1

i=1
Thus, eventually we have: ]5 - BOI = 0p(1).
STEP 2: By H; and the weak law of large numbers, 8, — ['; . in probability.
STEP 3: Let us show that f‘j,z -8 =o0,(1).
Some notations will be useful:
Ji= 1 yy>e, and siwagen 204 Mi =Ty g, and f)56.0
Thus:

Zzﬂ (wi)vn (i) (Ji = M) .

Using Hs, it is straighforward to see that P(M;) is asymptotically zero. Thus,
the term corresponding to M; converges in probability to 0.

We now need to show that L 57 ey Vi(yi)vh (vi)Ji = op(1).

Using the same demonstratlon as in step 1, we can obtain an upper bound
for the difference

% Z[Vﬂ(yf)Vﬁ,(yi) — v (yi )V (i) i |

By the Lebesgue dominated convergence theorem and Markov inequality, it
can be shown that:

1o 1 «
;Z],-:op(l), ;ZIVA(%)U:‘ = op(1),
i=1 i=1

op(1)

1 el s I s
=2 AWl = (1), and ~ 37|y ()]
i=1 g=

Thus as in step 1:

%Z V?’z (yi)v -V ( yz NJi| = op(1),

and therefore, 1/n 3 "_, v (vi)v) (vi)Ji = op(1).
Finally, we have shown that:

f‘j,l — 0 = 0p(1)

CoNcLusION: Using the results of steps 1, 2 and 3, we obtain:

I';; — T, in probability.
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6.2.3 Convergence in quadratic mean of T';; = IR Vi (y)vn (y) fa (y)dy
to I‘j,z = E’{E[z3|y]E[zl|y]}

Assumptions:

Ho: (2595) 1 =1, . nare vid

H, : K is a density.

H, :  Kernel estimators f,, f), ¢2, and dj ! based on K are uniformly
convergent on IR, where di! = 1/nh, Y " | 2!zt K((yi —y)/(hn)), for j,l =
L..,p.

Hs : Yy € R, f.(y), Vi(y), converge almost surely to f(y), »’(y) for
gl i

Hi: E[(#)Y] <00 forg = liuyp

Proof:

Let us denote V, = 157" | [jp (2] — vi(y)) (2} = V4 () Kn(y — yi)dy.
Under H;, the following equality is easily derived:

1 n
Vo = — z;-’zf-
n 4

=1

_ /IR Vi () () L (v)dy — /IR vl (y)Vh (4) £ (v)dy

" /IR Vi (y)vh (v) fa () dy

Without loss of generality, to keep notations simple, we assume here a com-
mon smoothing parameter A’ for the estimators v2, v! et f,. Thus, we

have:
n

- X 2z — v (y) v/t d
= 2 [ Ak

The proof splits into three steps.

STEP 1: We show the convergence in probability of V,, to E[cov(2?, 2'|y)].
Let « € RT — {0}. Note Dy = {y|f(y) > a}, Eo = R — D4, and c(y) =
cov(z?, 2'|Y = y). To simplify notation, we will write d,, instead of d%'. Thus,
we have:
Vi — E[cov(2 z"|y)]
Jp, Adn(y) = VA(W)vn (W) fa (v) — c(v)F(y)}dy
+ [, da(y) =@ (W) fa W)}y — [p. c(v)f(y)dy

Let € > 0. It is straightforward to see that:

Pr[|Va — Elcov(2 2 |y)]| > 3] < a + b + ¢
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where: a= Pr||f, {dn(¥) ~ iAW) — CWIW}y| > ],

= 7| A o) wdy| > ]

We can show that the probabilities a, b and ¢ converge to zero as n — oo.

i dalo) - V%(y)sz(y)fn(y)}dy' > ] and ¢ = Pr |

o For the probability ¢, Ve > 0, by choosing o sufficiently small, |, E. c(y) f(y)dy
will be lower than e.

e For the probability b, note B = on, {da(y) — V2 (y)V5 (y) fa(v)}dy. We use
the following inequality:

< 1B < /E da(e)ldy + / VA (W) () o ()l

o

Under Hj, it is easily shown that Ve > 0, by choosing « sufficiently small,
the two right terms of this inequality will be lower than e.

e For the probability a, we study the term

A= sup |dn(y) — Vi ()vh(¥) fn(y) — c(¥) f(¥)].

yED,
By noting that ¢(y) = s(y) — v/ (y)v!(y) and d(y) = s(y)f(y),

A < sup |dn(y) —d(y)| + sup |V (v)vh(v)fa(y) — vV (w)V' (W) F(W)].
yED YyED,

Under H,, we can show the two left terms of this majoration are o,(1). Thus,
a converges to 0 Ya € Rt — {0}.
Finally, we have the result:

Pr[|V;, — E[cov(2?, Z'|y)]| > 3¢] — 0 for n — oo,

ie V, — E[cov(z’, z'|y)] in probability for n — co.

STEP 2: From step 1 and the weak law of large numbers, we get:

[;; — T, in probability.
STEP 3: fj_z converges in quadratic mean (q.m.) to I';;.

2

From the Cauchy-Schwarz inequality, we get:
1/2 1/2
_7 7) 2 . d l 2 - d }
[, A )dy‘ [ wwrnwa} { [ oiormmd

Let V! = 150 (20)? — [p (Wi(y)*fa(y)dy and T, = L 0 (2))2 Thus,
Vo, 0 <V, <T,. By the weak law of large numbers, T, — E[(z7)?]
in probability. Under Hy, it can be shown that for n = oo, E[T?] < co.
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Thus, by lemma B of Serfling ([11], p. 15), { 72 } is uniformly integrable,
therefore { V. ? } is uniformly integrable.
From this and step 2, we can apply lemma C of Serfling ([11], p. 15) and
conclude that

V! — E[var(Z’|y)] in q.m.

A direct consequence of this result is:
/]R (V) Fa(y)dy — E[ B*[Z|y] ] inqm.

From E|T,f|2 < oo and F |V,{ 2|2 < 0o, we have E UH?, (1/,{(3;))2fn(y)dyl2 L
0o. Thus, by the same lemma C, {(flR (v (y))? fa(y)dy)?} is uniformly in-
tegrable, and therefore { [jp (V4 (y))?fn(y)dy} is uniformly integrable.
From the Cauchy-Schwarz inequality, {(fIR Vﬁ;(y)vfl(y)fn(y)dy)z} IS uni-
formly integrable.

An inspection of E UB Vi (y)V4 (y) fa (y)dyl2 shows that it is bounded. From
step 2 and lemma C, we ultimately obtain:

/IR vl (y)vh (y) fa (y)dy — E [E{z? |y} E{z'|y}] in q.m.
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